Skewness and kurtosis as locally best invariant tests of normality

نویسندگان

  • AKIMICHI TAKEMURA
  • MUNEYA MATSUI
  • SATOSHI KURIKI
چکیده

Consider testing normality against a one-parameter family of univariate distributions containing the normal distribution as the boundary, e.g., the family of t-distributions or an infinitely divisible family with finite variance. We prove that under mild regularity conditions, the sample skewness is the locally best invariant (LBI) test of normality against a wide class of asymmetric families and the kurtosis is the LBI test against symmetric families. We also discuss non-regular cases such as testing normality against the stable family and some related results in the multivariate cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Skewness and kurtosis as locally best invariant tests of normality

Consider testing normality against a one-parameter family of univariate distributions containing the normal distribution as the boundary, e.g., the family of t-distributions or an infinitely divisible family with finite variance. We prove that under mild regularity conditions, the sample skewness is the locally best invariant (LBI) test of normality against a wide class of asymmetric families a...

متن کامل

Behaviour of skewness, kurtosis and normality tests in long memory data

We establish the limiting distributions for empirical estimators of the coefficient of skewness, kurtosis, and the Jarque–Bera normality test statistic for long memory linear processes. We show that these estimators, contrary to the case of short memory, are neither √ n-consistent nor asymptotically normal. The normalizations needed to obtain the limiting distributions depend on the long memory...

متن کامل

Locally Asymptotically Optimal Tests for Autoregressive against Bilinear Serial Dependence

Locally asymptotically most stringent tests for autoregressive against diagonal bilinear time series models are derived. A (restricted) local asymptotic normality property is therefore established for bilinear processes in the vicinity of linear autoregressive ones. The behaviour of the bispectrum under local alternatives of bilinear dependence shows the danger of misinterpreting skewness or ku...

متن کامل

Normality of Indian Crop Yields: Application of Panel Analysis

This paper has two-fold contribution. First, normality of the crop yield residuals are examined using panel statistical procedures accounting for trend, autocorrelation and heteroskedasticity. Second, to evaluate the importance of accounting for spatial and temporal variation on the normality of crop yield residuals, the changes in the skewness, kurtosis and D’Agostino-Pearson 2 (K ) omnibus no...

متن کامل

Detecting Low Complexity Clusters by Skewness and Kurtosis in Data Stream Clustering

Established statistical representations of data clusters employ up to second order statistics including mean, variance, and covariance. Strategies for merging clusters have been largely based on intraand inter-cluster distance measures. The distance concept allows an intuitive interpretation, but it is not designed to merge from the viewpoint of probability distributions. We suggest an alternat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006